

Daily Tutorial Sheet-1

JEE Advanced (Archive)

1. (20%, 80%)

Boron isotopes ^{10.1}₅B, ^{11.01}₅B

$$\frac{x}{100} \times (10.01) + \frac{100 - x}{100} (11.01) = 10.81$$

$$\Rightarrow$$
 $x = 20$

$$\therefore~~20\%~^{10.01}_{~5}B$$
 and 80% $^{11.01}_{~5}B$

Hence ratio is 1:1

36 gm of
$$H_2O$$

$$\frac{36}{18} \times N_A = 2N_A$$

28 gm of CO
$$\frac{28}{28} \times N_A = N_A$$

46 gm of
$$C_2H_5OH$$

$$\frac{46}{46} \times N_A = N_A$$

54 gm of
$$N_2O_5$$
 $\frac{54}{108} \times N_A = 0.5 N_A$

5.(A) CO₂ molecule has
$$(6 e^{-}) + (8 e^{-} \times 2) = 22 e^{-}$$
 from carbon from oxygen

6.(Isotopic Existence)

Atomic mass is defined as weighted average (as per their percentage composition in nature) of all the naturally occurring isotopic atoms of an element compared to $\left(\frac{1}{12}\right)^{th}$ mass of ^{12}C – isotope of carbon.

7.(0.473)

Vapour Density of mixture \times 2 = Average molar mass of mixture

Average Molar Mass = $38.3 \times 2 = 76.6$

For 100 gm mixture let mass of
$$\begin{cases} NO_2 & N_2O_4 \\ x \text{ gm} & (100 - x)g \end{cases}$$
$$\frac{x}{46} + \frac{100 - x}{92} = \frac{100}{76.6}$$

⇒
$$100 + x = 120.1$$
 ⇒ $x = 20.1 \text{ gm}$

$${}^{n}\text{NO}_{2} = \frac{20.1}{46} = 0.437$$

8. 6.023×10^{24}

18 ml
$$H_2O \Rightarrow 18 \text{ gm } H_2O \Rightarrow 1 \text{ mole } H_2O \text{ (d = 1 gm/ml)}$$

1 molecule of
$$H_2O$$
 has $1e^- \times 2 + 8e^- = 10e^-$

$$\therefore$$
 1 mole H₂O has 10 moles e⁻ \Rightarrow 6.022 × 10²⁴ e⁻

9. C-12 isotope

(b)

$$\left(\frac{1}{12}\right)^{th}$$
 mass of 12 C -isotope of carbon

10. (a)
$$V_{CO_2} = 0.6L$$
 (b) $24 \, \mathrm{gm / mol}$

(a)
$$CO_2 + C \rightarrow 2CO(g)$$

$$CO_2 + C \rightarrow 2CO(g)$$

$$('x')\ell \qquad \qquad ('2x')\ell$$

$$CO \xrightarrow{reaction \ in} CO \qquad (1+x) \ell$$

$$(1+x) \ell = 1.6 \ell$$

$$x = 0.6 \ell$$

$$\Rightarrow V_{CO_2} = 0.6 \ell$$

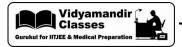
$$V_{CO} = 0.4 \ \ell$$
 Formula of metal nitride would be $M_3 \ N_2$ Let atomic mass of metal be 'm' gm/mol.

% by mass of nitrogen in metal nitride =
$$\frac{28}{3m + 28} \times 100 = 28$$
 (Given)

$$\Rightarrow 3m = \frac{72}{3} = 24 \text{ gm / mol}$$

11.(0.4) 3.0g of salt of molecular weight 30g is present in 250 g solution

$$\begin{bmatrix} 250 \text{ g water will make} \\ 250 \text{ ml solution} \\ d_{\text{H}_2\text{O}} = 1 \text{ gm / ml} \end{bmatrix}$$


 $\Rightarrow \frac{3}{30} = 0.1$ mole solute is present in 0.25L solution.

Hence, molarity =
$$\frac{0.1}{0.25}$$
 = 0.4 M

13. (i) 37.92 (ii) 0.065 (iii) 7.73m

Let us consider 1.0 L solution for all the calculation.

(i) Weight of 1 L solution =
$$1250 \text{ g}$$

Weight of
$$Na_2S_2O_3 = 3 \times 158 = 474g$$

$$\Rightarrow$$
 Weight percentage of Na₂S₂O₃ = $\frac{474}{1250} \times 100 = 37.92$

(ii) Weight of
$$H_2O$$
 in 1 L solution = 1250 – 474 = 776 g

Mole fraction of
$$\text{Na}_2\text{S}_2\text{O}_3 = \frac{3}{3 + \frac{776}{18}} = 0.065$$

(iii) Molality of Na⁺ =
$$\frac{3 \times 2}{776} \times 1000 = 7.73 \,\text{m}$$

- **14.(A)** In one molal solution 1 mole of solute is dissolved in 1000 gm of solvent.
- **15.(D)** The concentration terms which are associated with volume are temperature dependent.
 - :. Molality is temperature independent.

Solution | Workbook-1 38 Stoichiometry-I